

Acuaponía básica: produzca su propio alimento

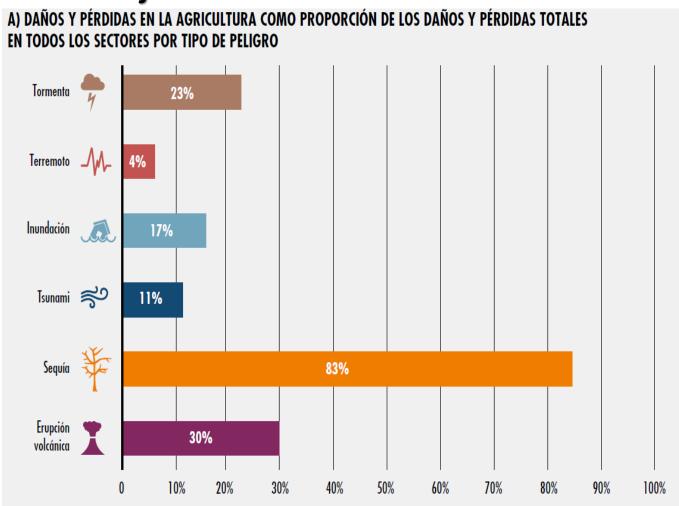
> Ramón Nieto *Biólogo Marino*

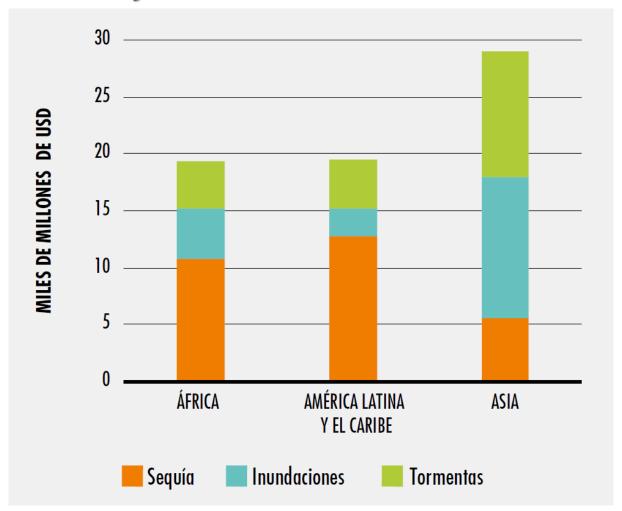
ACUAPONÍA BÁSICA

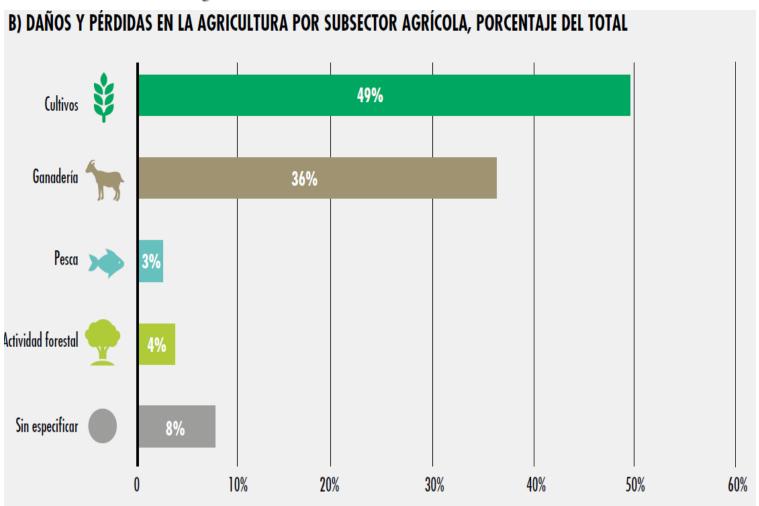
- 1. Estatus Agropecuario
- 2. ¿Qué es Acuaponía?
- 3. Calidad de agua y Balance de Masas
- 4. Diseño de un sistema casero

Produce tu propio alimento..!!!

Desarrollo Sostenible


Seguridad alimentaria


Cambio climático


Efectos del cambio climático

Efectos del cambio climático

Efectos del cambio climático

Efectos del cambio climático

Relación Producción Agropecuaria Vs Calentamiento Global

PIB agropecuario en Colombia 2001-2010

Temperatura Media Nacional 1980-2011

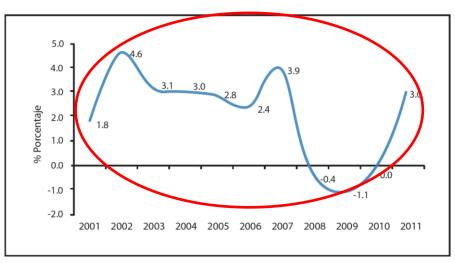
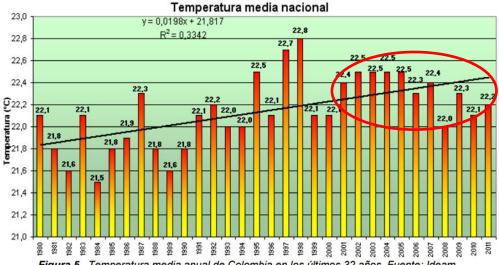
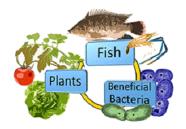
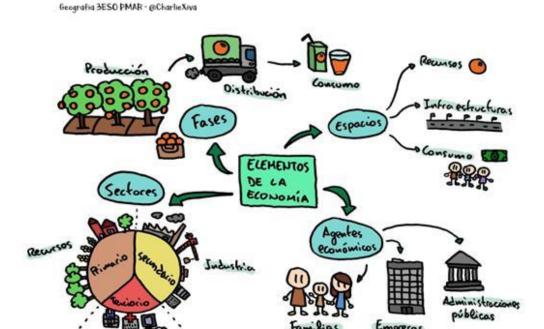


Figura 16. Comportamiento del PIB agropecuario en Colombia 2001 – 2011 Fuente: DANE, Pronóstico 2011 del MADR

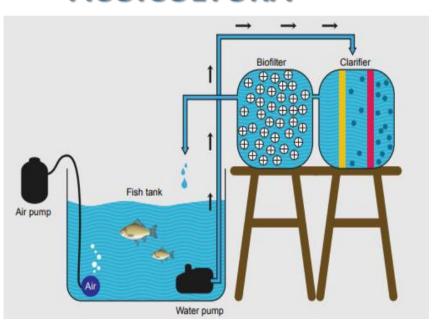



Figura 5. Temperatura media anual de Colombia en los últimos 32 años. Fuente: Ideam


ASPECTOS DE LA CIRCULACIÓN ATMOSFÉRICA DE GRAN ESCALA SOBRE EL NOROCCIDENTE DE SURAMÉRICA ASOCIADA AL CICLO ENOS 2009-2010 Y SUS CONSECUENCIAS EN EL RÉGIMEN DE PRECIPITACIÓN EN COLOMBIA.

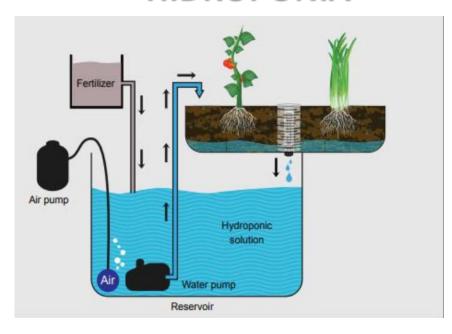
¹ Profesional Especializado, Subdirección Meteorlogía, IDEAM Profesor Asociado, Posgrado Meteorología, Universidad Nacional de Colombia

Seguridad Alimentaria


Servicios

Seguridad Alimentaria

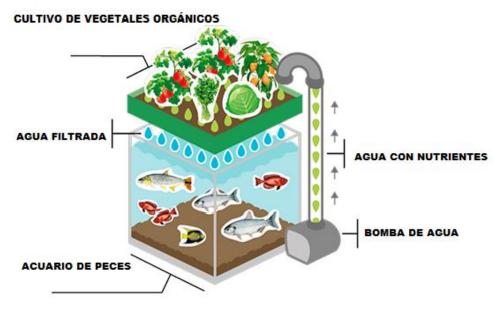
Inseguridad Alimentaria a Nivel Mundial

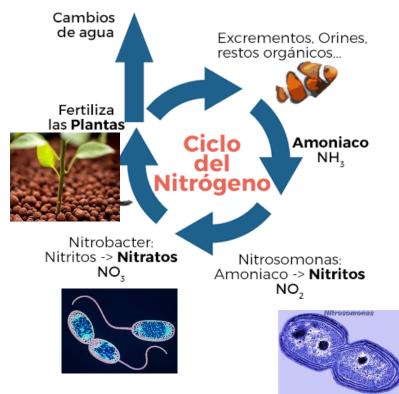


ACUICULTURA

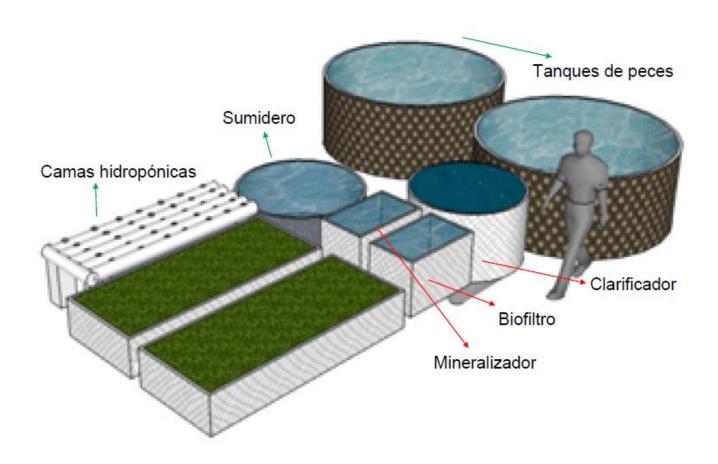
Cultivo de Organismos Acuáticos en Sistemas Controlados

HIDROPONÍA



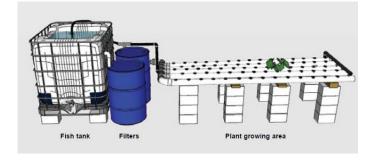

Cultivo de Plantas en Sustratos Inertes

PRODUCCIÓN SOSTENIBLE DE ALIMENTOS DE MANERA "LIMPIA Y ECOLÓGICA" EN CUALQUIER "MOMENTO Y LUGAR"


Concepto Básico

SISTEMA DE ACUAPONÍA

Concepto Básico



Tipos de Diseño

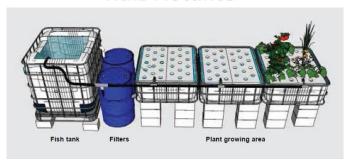
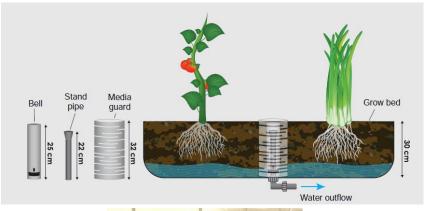
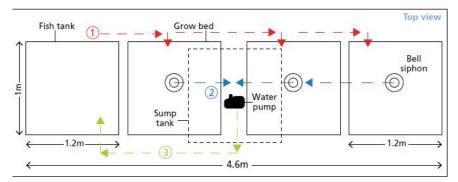
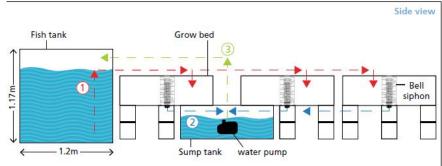
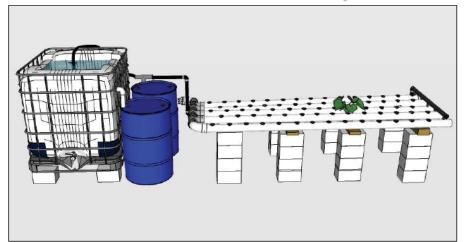

Camas con sustrato

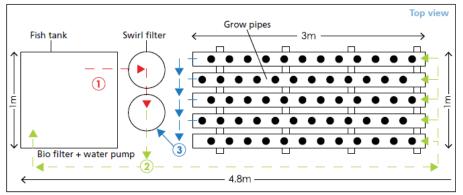
Lámina Nutritiva NTF

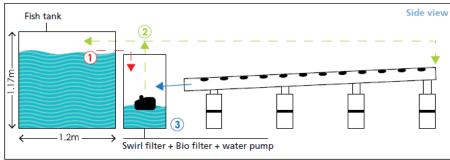

Raíz Flotante

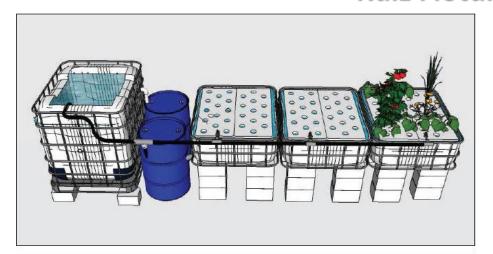


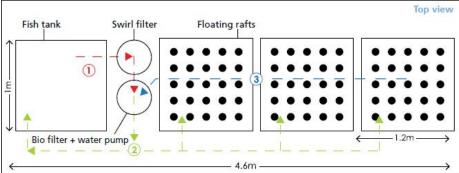

Cama con Sustrato Inorgánico

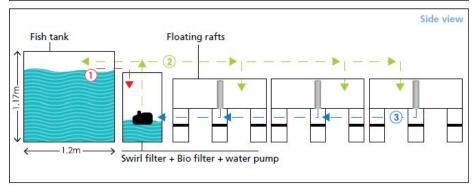


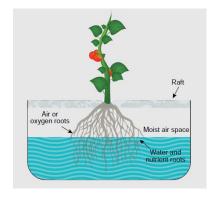


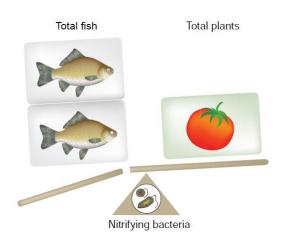

Lámina Nutritiva (NFT - Nutrient Film Technique)

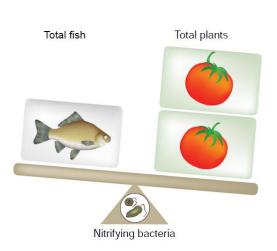


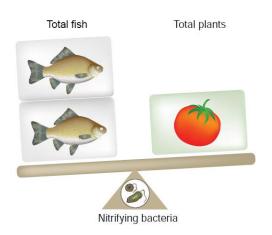


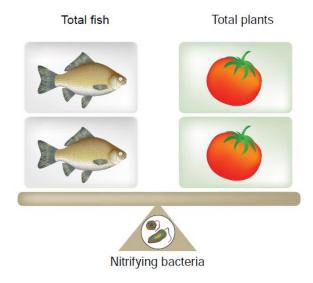

Raíz Flotante



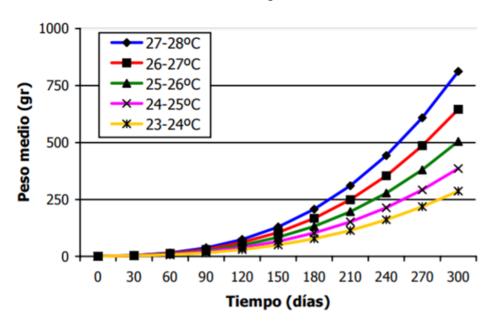








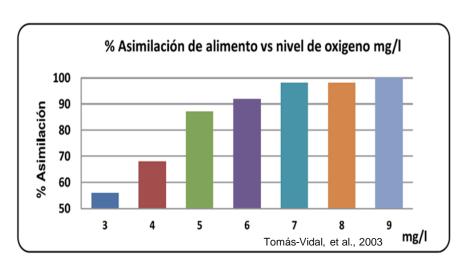
www.serviaquacolombia.com


www.hannacolombia.com

Parámetros de Importancia

- 1. OXÍGENO DISUELTO
- 2. TEMPERTATURA
- 3. Ph
- 4. AMONIACO (NH₃)
- 5. DIOXIDO DE CARBONO
- 6. NITRITO
- 7. NITRATO
- 8. SÓLIDOS SUSPENDIDOS
- 9. ALCALINIDAD
- 10. DUREZA

PARÁMETROS ÓPTIMOS DE CALIDAD DE AGUA						
Tipo de Organismo	Temp. °C	OD mg/l	Ph	Amonio mg/l	Nitritos mg/l	Dureza mg/l
Peces Tropicales	25 - 30	>4	6 - 8.5	<1	<1	50 - 150
Peces Templados	14 - 16	>6	6 - 8.5	<0.5	<0.3	50 - 150
Plantas	16 - 30	>3	5.5 - 7.5	<30	<1	50 - 150
Bacterias	17 - 34	>4	6 – 8.5	<3	<3	>150



AFECTA LA ACTIVIDAD METÁBOLICA DE LOS ORFANISMOS Y LA SOLUBILIDAD DE LOS GASES

- A > T° < OD
- A < T° > OD
- A > T° > Amoniaco (Tóxico)

Oxígeno Disuelto

Consumo de O₂ en el día

- Peces
- Alimento
- Desechos

Consumo de O₂ en la noche

- Peces
- Alimento
- Desechos
- Fitoplancon

A < OD > Estrés

Causas:

- Falta de aireación
- Exceso de Alimentación
- Exceso de Desechos
- Exceso de Temperatura
- Densidad Alta de Pedes

Acciones:

- Suspender Alimentación
- Recambio de Agua
- Incrementar Aireación
- Limpieza
- Desdoble de Organismos

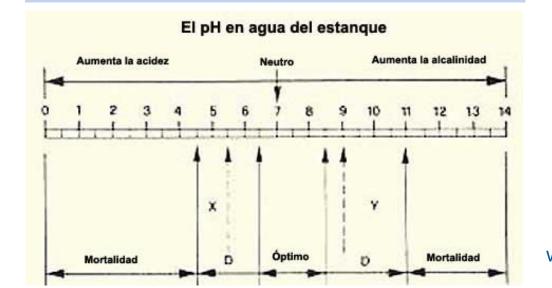
SISTEMAS DE AIREACIÓN

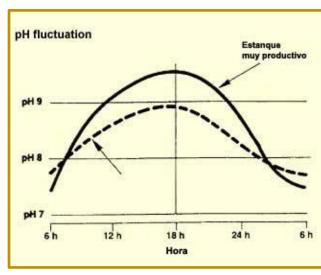
- Incrementar las densidades de siembra hasta un 30%.
- Buenos rendimientos y menor mortalidad.
- Mantiene niveles constantes dentro del cuerpo de agua.
 Respiración de algas en la noche
 Degradación de Materia Orgánica
- Elimina los gases tóxicos.

BLOWER

SPLASH

PALETAS





pH (potencial de Hidrógeno)

 $H_2^0 \longrightarrow (H^+) + (0H^-)$

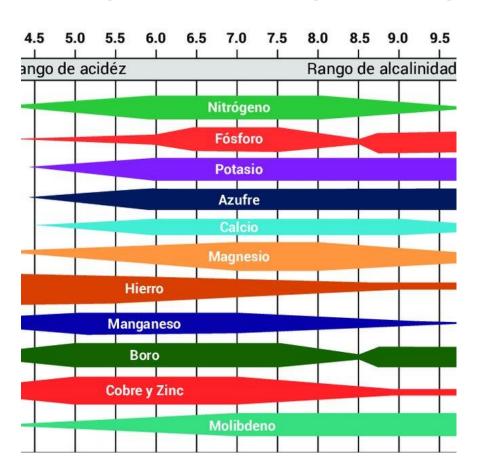
- Produce letargia, inapetencia, retardan el crecimiento y la reproducción.
- Pérdidas de pigmentación.
- Incremento en la secreción de mucus de la piel.
- pH ácidos, el ion Fe ++ soluble:
 - Afecta células branquiales
 - Muerte por anoxia (asfixia por falta de oxígeno).
- pH básicos: Incrementa toxicidad del amonio en peces

- Concentración de CO2.
- Densidad del fitoplancton.
- Alcalinidad total y la dureza del agua.

www.serviaquacolombia.com

$$H_20 \longrightarrow (H^+) + (0H^-)$$

Causas:


- 1. Algas fotosintéticas
- 2. Exceso de dióxido de carbono
- 3. Nitrificantes

Acciones:

- 1. Recambio de agua
- 2. Agregar base o ácido
- Ventilación

pH (potencial de Hidrógeno)

Es probablemente el parámetro que más atención requiere en Acuaponia

Utilizar en alternancia Hidróxido de Calcio e Hidróxido de Potasio para regular el pH. Agregan nutrientes deficientes en el sistema Ca y K. No utilizar Bicarbonato de Sodio, las plantas no soportan salinidades.

Bacterias Nitrificantes Disminuyen el pH debido al consumo de la Alcalinidad.

Para Acuaponia se recomienda mantener el pH entre 6 y 7.

Br.a

Alcalinidad

Concentración total de bases en el agua.

- mg/l de CaCO3, presentes como iones de:
 - CO₃ Carbonato
 HCO₃ Bicarbonato

 CAPACIDAD AMORTIGUADORA DEL PH
- > Aguas con alcalinidad alta: mantiene el pH estable mañanas.
- Aguas con alcalinidad baja: facilitan los cambios de pH

- Rango entre 30 y 200 mg/l de CaCO3

Alcalinidades más altas o más bajas <u>NO</u> perjudicarán en los cultivos.

Alcalinidad entre 200 a 250 mg/l = [CO₂]

Contiene dióxido de carbono a un nivel apropiado, facilitando la producción de plancton.

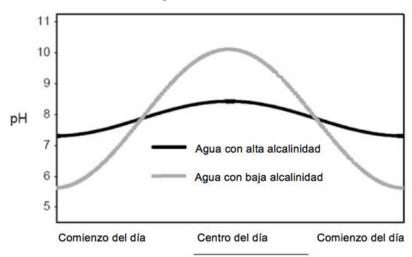
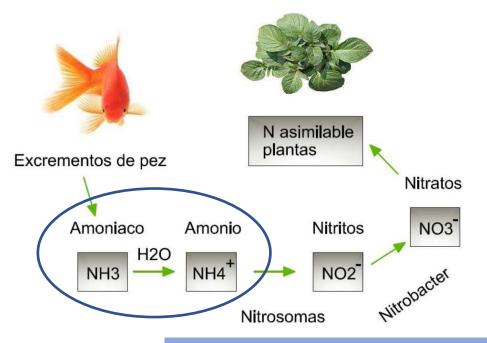


Figura 1. Cambios en pH durante un periodo de 24 horas en aguas de alcalinidades totales altas y bajas. (Wurts & Durborow, 1992).

Alcalinidad

- Cómo actuar

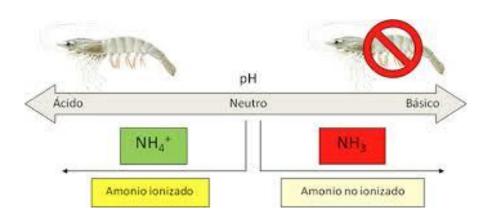


Cómo mantener niveles óptimos

- Subir Alcalinidad: Alka (Producto para piscinas)
 - Entre 10 15 gr / m³.
 - Esperar 20 min., tomar dato.
 - Repetir dosis hasta el rango deseado.
- -Bajar Alcalinidad:
 - no existe un método práctico.
 - El accionar de las bacterias nitrificantes disminuye la alcalinidad.

Amonio $(NH_3 - NH_4^+)$

Relacionado con:

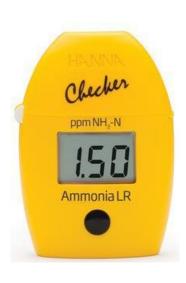

- La tasa de alimentación
- Eficiencia de la dieta
- Tamaño del pez
- Temperatura del agua
- Aumento del pH

- > Se reduce el consumo de alimento
- Aumenta la Conversión Alimenticia
- Incrementa la necesidad de O.D.
- Reducción 14% O₂ en la sangre
- ➢ Incremento de 15% de CO₂ en sangre

Amonio $(NH_3 - NH_4^+)$

El amonio en el agua se presenta bajo dos formas:

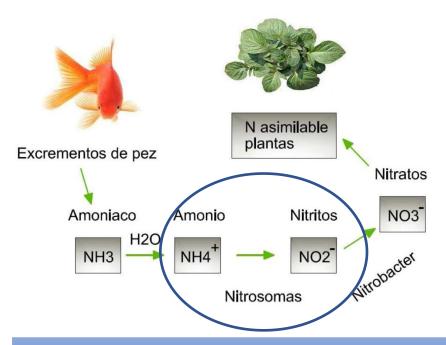
- Amoníaco no ionizado (NH₃) = TÓXICO
- lon amonio (NH⁺₄) = NO TÓXICO
 (solo en altas concentraciones)



Percent unionized ammonia (NH₃) in aqueous ammonia solutions.

	Temperature, °C							
рН	24	25	26	27	28	29	30	
6.0	0.0530	0.0569	0.0610	0.0654	0.0701	0.0752	0.0805	
6.1	0.0667	0.0716	0.0768	0.0824	0.0833	0.0946	0.101	
6.2	0.0839	0.0901	0.0967	0.104	0.111	0.119	0.128	
6.3	0.106	0.113	0.122	0.130	0.140	0.150	0.160	
6.4	0.133	0.143	0.153	0.164	0.176	0.189	0.202	
6.5	0.167	0.180	0.193	0.207	0.221	0.237	0.254	
6.6	0.211	0.226	0.242	0.260	0.279	0.299	0.320	
6.7	0.265	0.284	0.305	0.327	0.351	0.376	0.402	
6.8	0.333	0.358	0.384	0.411	0.441	0.472	0.506	
6.9	0.419	0.450	0.483	0.517	0.554	0.594	0.636	
7.0	0.527	0.566	0.607	0.651	0.697	0.747	0.799	
7.1	0.663	0.711	0.763	0.808	0.876	0.938	1.00	
7.2	0.833	0.894	0.958	1.03	1.10	1.18	1.26	
7.3	1.05	1.12	1.20	1.29	1.38	1.48	1.58	
7.4	1.31	1.41	1.51	1.62	1.73	1.85	1.98	
7.5	1.65	1.77	1.89	2.03	2.17	2.32	2.48	
7.6	2.07	2.22	2.37	2.54	2.72	2.91	3.11	

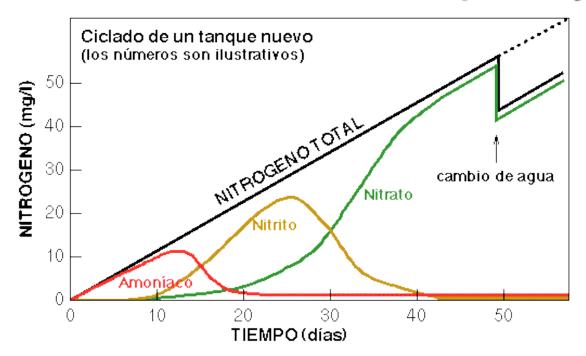
- Cómo actuar


Amonio $(NH_3 - NH_4^+)$

Cómo mantener niveles óptimos

- Bajar y/o controlar efectos del amonio:
 - Uso de Biofiltros
 - Adición de Bacterias Nitrificantes al sistema.
 - Recambio de agua.
 - Bajar niveles de pH
 - Suspender alimentación

Proceso de Nitrificación (NO₂) – (NO₃)


- Producto metabólico del pez.
- M.O en Descomposición.

Efectos en los peces:

- Produce Metahemoglobinemia "Sangre achocolatada"
- Retarda el creciemiento
- Anemia Funcional
- Aumenta suceptibilidad a enfermedades bacteriana.

Nitritos (NO₂)

- La toxicidad de los nitritos depende de la cantidad de cloruros, temperatura y concentración de oxígeno en el agua.
- > Es necesario mantener la concentración por debajo de 0.1 ppm.

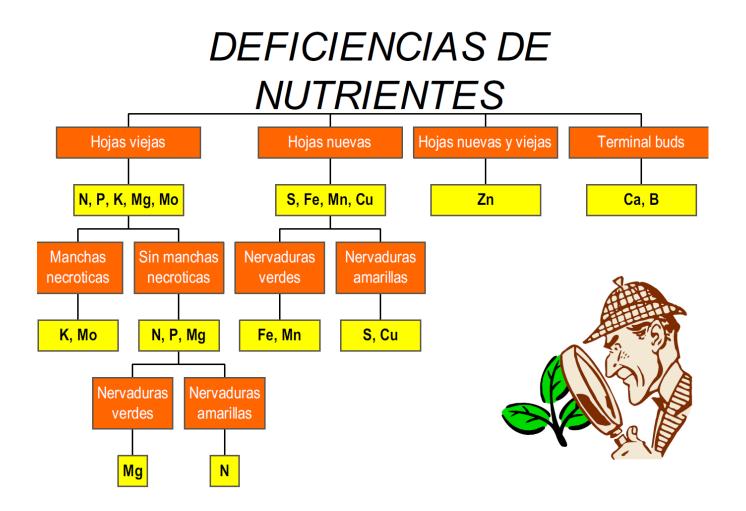
Sólidos Disueltos – Conductividad Eléctrica CE

La Conductividad Eléctrica es la manena de medir la cantidad de nutrientes que se encuentra en solución.

Una CE de 1 dS/m equivale a un contenido aprox. De 640 mg/l de Sólidos Disueltos Totales.

Cambios en calid con excesiv	
Parámetro	Efecto
Oxígeno Disuelto	Disminución
Dióxido de Carbono	Aumento
рН	Disminución
Alcalinidad	Disminución
Amonio	Aumento
Nitrito	Aumento
Nitrato	Aumento
Fósforo	Aumento

Calidad de agua


PARÁMETROS ÓPTIMOS DE CALIDAD DE AGUA						
Tipo de Organismo	Temp. °C	OD mg/l	Ph	Amonio mg/l	Nitritos mg/l	Dureza mg/l
Peces Tropicales	25 - 30	>4	6 - 8.5	<1	<1	50 - 150
Peces Templados	14 - 16	>6	6 - 8.5	<0.5	<0.3	50 - 150
Plantas	16 - 30	>3	5.5 - 7.5	<30	<1	50 - 150
Bacterias	17 - 34	>4	6 – 8.5	<3	<3	>150

CONDICIONES PARA LA PRODUCCIÓN DE PLANTAS MEDIANTE LA ACUAPONIA					
Especie	рН	Planta/m ²	Crec./Semana	Temp. °C	Exp. Solar
Albahaca	5.5 - 6.5	8 - 40	5 - 6	20 - 25	Mod Alta
Lechuga	6.0 - 7.0	20 - 25	4 - 5	15 - 22	Mod Alta
Pepino	5.5 - 6.5	2 - 5	7 - 9	18 - 26	Alta
Tomate	5.5 - 6.5	3 - 5	8 - 12	15 - 25	Alta
Brócoli	6.0 - 7.0	3 - 5	8 - 12	10 - 20	Mod Alta

Macronutrientes
Nitrógeno (N)
Potasio (K)
Calcio (Ca)
Magnesio (Mg)
Fósforo (P)
Azufre (S)
Silíceo (Si)
Micronutrientes
Cloruro (Cl)
Hierro (Fe)
Boro (B)
Manganeso (Mn)
Sodio (Na)
Zinc (Zn)
Cobre (Cu)
Niquel (Ni)
Molibdeno (Mb)

Una dieta balanceada (Elementos Esenciales)

- •El carbono, hidrógeno, y el oxígeno son considerados los elementos esenciales.
- El nitrógeno, el fósforo y el potasio (NPK), se obtienen del suelo o de la solución nutritiva y son los macronutrientes primarios.
- El calcio, el magnesio y el azufre son los macronutrientes secundarios que se necesitan en menor cantidad.
- Entre los micronutrientes, necesarios en muy pequeñas cantidades y tóxicos cuando aumenta su concentración, encontramos al hierro, manganeso, cobre, zinc, níquel, boro, y cloro.

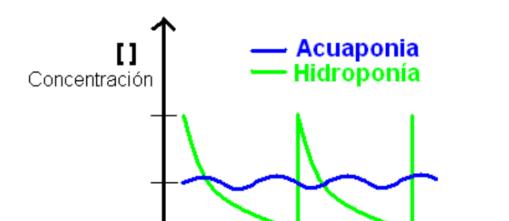
En Plantas de GRAN PORTE, el Calcio y el Potasio llegan a ser insuficientes y se pueden agregar en forma de bases y así elevar el pH

(HIDROXIDO DE POTASIO, HIDROXIDO DE CLACIO, CARBONATO DE CALCIO).

Si se agregan en exceso, elevan el pH y vuelven tóxicos los compuestos nitrogenados para el pez.

Si se quiere agregar algún fertilizante, es importante que sea Hidrosoluble y que no contenga Amonia (como el Fosfato Monoamónico) o Excesos de Azúfre! Pudiendo ser el Nitrato de Calcio o el Nitrato de Potasio.

En casi todos los casos, es necesaria la adición de Hierro* a 2 mg/L.

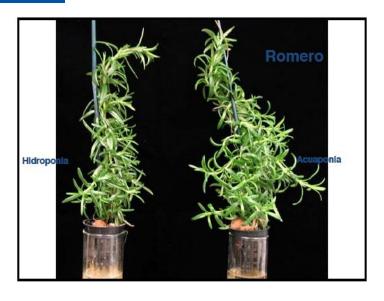

No ocasiona problemas al Pez sino hasta los 10 mg/L.

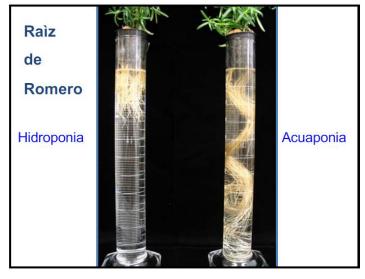
Se puede agregar de Manera Foliar o Disuelto en el Agua

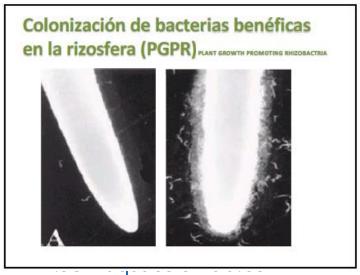
3. Calidad de Agua y Balance de Masas

La acuaponia no trabaja a los mismos niveles de nutrientes que la Hidroponia

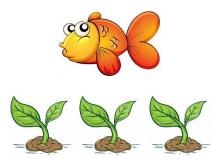
Nutriente	Acuaponia	Hidroponia		
(mg/L)	(Rakocy)	(Resh)		
Nutrientes	62-779	1200		
Ca	10.0-82	150		
Mg	0.7-12.9	50		
K	0.3-192	150		
NO3	0.4-82	115		
PO4	0.4-15	50		
SO4	0-23	113		
Fe	0.03-4.3	5		
Mn	0.01-0.19	0.5		
Cu	0.01-0.11	0.5		
Zn	0.11-0.8	0.05		
В	0.01-0.23	0.5		
Мо	0-0.17	0.05		


Tiempo *t*


Concentración de Nutrientes


En la acuaponia los nutrientes son reemplazados continuamente

3. Calidad de Agua y Balance de Masas



RELACIÓN PARA SISTEMAS CASEROS

Por cada 1 Unidad de Peces (m³) ----- 3 Unidades de Plantas (m²)

1:3

SE RECOMIENDA UTILIZAR UNA DENSIDAD DE PECES DE 10Kg/m3

Selección de Bomba de Agua - Pequeña Escala

RECOMENDABLE USAR UNA BOMBA QUE REALICE UN RECAMBIO DE AGUA DE PECES EN DOS HORAS:

Ejemplo: El tanque es de 1.000 litros, entonces escogemos una bomba de 600 L/hora (10 LPM)

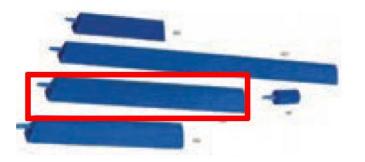
POTENCIA	8 W
Q/LTS MAX	600 L/h
H. MÁXIMA	1.0 m

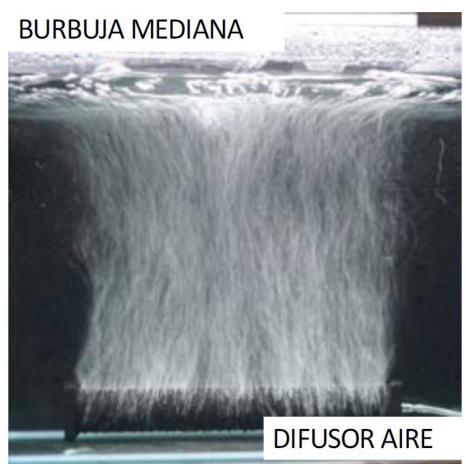
Selección de Bomba de Aire - Pequeña Escala

Consumo: 16 w

Flujo de aire: 1200 L/H – 317 GPH

RECOMENDABLE USAR UN
EQUIPO QUE SUMINISTRE UN
CAUDAL DE AIRE (L/H) SIMILAR
AL VOLUMEN DEL TANQUE:
Ejemplo: El tanque es de 1.000
litros, entonces escoger una
bomba de aire con un caudal
similar a 1.000 L/H.


Selección de Sistema de Difusión de Aire


DIFUSOR ECONOMICO

Tamaño Piedra	Kg/Pez
1"	0.45
4"	1.36
6"	1.8
8"	2.7
12"	3.6

Ejemplo:

Si son 10 kg de Pez, puedo utilizar 4 piedras de 8"

Selección de Sedimentador – Mineralizador - Biofiltro

Sedimentador

Tiempo de retención recomendado: 15 min.

Ejemplo: si escogimos una bomba de 10LPM. Por lo tanto, el volumen del sedimentador será de: 10LPM x 15 min = **150 litros**

Mineralizador

Tiempo de retención recomendado: 5 min.

Ejemplo: si tenemos un flujo de 10LPM, entonces el mineralizador será: 10 x 5 min = **50 litros**

Biofiltro

Volumen recomendado del sustrato: 1 litro x 1 Kg de pez.

Contenedor recomendado:

Doble

del volumen de sustrato.

Ejemplo: Si tenemos 10Kg de peces, la cantidad de sustrato sería de 10 litros. Por ende, el volumen del biofiltro será de: **20 litros**

Relación Pez - planta

RELACIÓN PARA SISTEMAS CASEROS

Por cada 1 Unidad de Peces (m³) ----- 3 Unidades de Plantas (m²)

	Área crecimiento plantas por tipo unidad (plantas/m2)			Cantidad de alimento para peces (g/m2.día)				Biomasa de		
Tipo de unidad	Vegetales hoja verde		Vegetales de fruto		Vegetales hoja verde		Vegetales de fruto		peces en el tanque (Kg/m3)	
	Mínimo	Máximo	Mínimo	Máximo	Mínimo	Máximo	Mínimo	Máximo	Mínimo	Máximo
Extensiva	20	25	4	. 8	40	50	50	80	10	25

1:3

CURSOS ESPECIALIZADOS

https://www.acuaponia.com/serviaqua

CURSOS ESPECIALIZADOS

https://www.acuaponia.com/serviaqua

Equipos Específicos

HI 98131 Medidor de bolsillo Groline de pH/EC/TDS/°T

HI 9147
Medidor De Oxígeno
Disuelto En Agua Para
Acuicultura

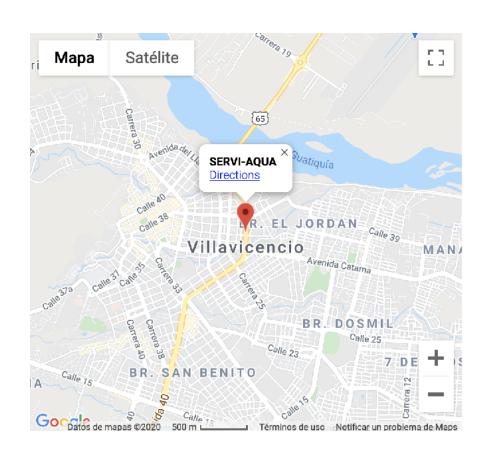
HI 981412 Sistema dosificador para pH Groline

Contacto

Ramón Nieto Bernal

serviaquacolombia@gmail.com 316 373 2795

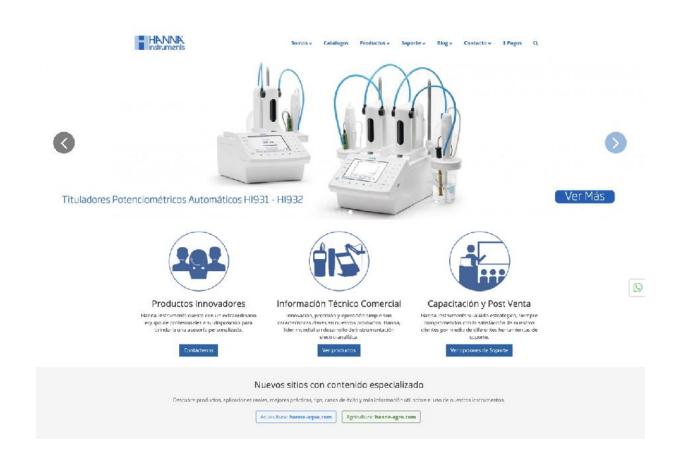
Villavicencio


Av. del Llano - Cra 23 No. 37-41

ServiAqua colombia

316 373 2795

@serviaquacolombia



www.hannacolombia.com

Recursos

- Artículos
- Noticias
- Videos
- Asesoría
- Consejos
- Software
- Manuales
- Catálogos
- Productos
- Certificados
- Metodologías
- Capacitaciones
- Servicio Técnico

Consultoría Científica

consultoriacientifica@hannacolombia.com (571) 518 9995


Servicio Técnico

serviciotecnico@hannacolombia.com (571) 518 9995 Ext. 122, 123, 124 154

Hanna Colombia

ventas@hannacolombia.com (571) 518 9995

@HannaColombia

Oficinas Hanna

¿Preguntas?

